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Abstract

The effect of magnetic field superposition on electrolysis carried out in magnetic fields generated inside a solenoid is
analysed using the theory of magnetohydrodynamics. It is shown that induced field inhomogeneity is responsible for
the creation of local vortex motion which enhances ionic mass transport rates. A detailed vorticity analysis of two
laboratory-scale, and a pilot plant-scale experimental magnetoelectrolytic cell serves for illustration.

List of symbols

a mean solenoid radius (cm)
b search point location on the solenoid axis

(cm); electrode separation distance (cm) in
Equations 18–23

B magnetic flux density (magnetic induction)
vector (mT)

c electrolyte concentration (mol dm�3)
ce cation concentration at the electrode surface

(mol dm�3)
cI ionic concentration (mol dm�3)
c� dimensionless concentration
c1 cation concentration in the bulk (mol dm�3)
D electrolyte diffusivity (cm2 s�1)
Di ionic diffusivity (cm2 s�1)
e unit vector
F faradaic constant (96 487 C mol�1)
F ða; bÞ geometric factor relationship defined by

Equation 3(b)
FT total external force vector (N)
h height of the electrolyte level in the electro-

lytic cell (cm)
iB cathodic limiting current density in a mag-

netic field (A dm�2)
iB¼0 cathodic limiting current density in the ab-

sence of a magnetic field (A dm�2)
I electric current (A)
j electric current density vector (A cm�2); j0 its

magnitude
k1 I=2pqLc (A cm�2 g�1) (Equation 11)
k2 k1=m (C g�1) (Equation 12)

ðkMÞB mass transport coefficient in a magnetic field
(cm s�1)

ðkMÞB¼0 mass transport coefficient in the absence of a
magnetic field (cm s�1)

K proportionality factor between vx and x1=2 in
natural convection theory (Equation 23.12 in
[32])

K0 modified Bessel function of the second kind,
order zero

K1 modified Bessel function of the second kind,
order one

L length of the solenoid (cm)
Lc length of a cylindrical electrode (cm)
Le width of a (rectangular) plate electrode (cm)
n number of turns per unit length of solenoid

coil (cm�1)
P pressure (N cm�2)
q charge density (C cm�3)
Q rjrBz (J cm�3) (Table 1)
r radial position (cm)
R radius of a thin helical coil (cm)
R1 inner radius of the helical coil (cm)
R2 outer radius of the helical coil (cm)
RM ratio defined in Equation 26
t time (s)
tþ cationic transference number (-)
u 2pna (-)
v velocity vector (m s�1)
vA Alfvén wave velocity (cm s�1)
x cartesian coordinate direction (cm)
y cartesian coordinate direction (cm)
z cartesian coordinate direction (cm)
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1. Introduction

Electrolysis carried out under the influence of magnetic
fields has provided a significant extension to the horizon
of modern electrochemical science; its contributions
have been summarized in various publications (e.g., [1–
6]). Enhanced rates in electrodeposition, creation of
specific growth patterns of electrodeposits, and specific
surface conditioning are major benefits of magnetic field
superposition on electric fields, the latter responsible for
primary current flow.

A large majority of experimental investigations are
linked to uniform magnetic fields, although earlier
reports describe certain hydrodynamic phenomena gen-
erated in nonuniform fields (e.g., [7–10]). An in-depth
analysis of inhomogeneous magnetic induction effects
has been attempted only lately, and a recent publication
[11] may be regarded as a ‘precursor’ to the detailed
theoretical treatment offered in the current paper.

The principal objective for utilizing nonuniform
magnetic fields (NMF) is the generation, locally or in
the entire liquid body, of magnetohydrodynamic
(MHD) turbulence, which can be a promoter of high
ionic mass transport rates. In turn, electrode process
rates may be enhanced at preferential local surfaces, or
along the entire surface, provided that the process is
essentially mass transport-controlled.

The purpose of this paper is to present an MHD-
based framework for the analysis of electrolysis carried
out under NMF conditions, with specific reference
to certain experimental observations reported in the
literature. It is hoped that it will contribute to a deeper
understanding of MHD phenomena in electrolytes,
and that further work in this research area will be
stipulated.

2. Theory

2.1. Magnetic field distribution in solenoids

The classical theory of solenoidal fields [12] yields three
fundamental relationships for the magnetic flux density
(magnetic induction) distribution in the axial and
transverse directions in a solenoid made up of n turns
per unit length and radius R, carrying electric current I.
If the thickness of the winding is negligible with respect
to the radius of the helical coil, the magnetic flux density
components can conveniently be expressed in terms of
cartesian coordinates [12] as

Bx ¼ 0 ð1aÞ

By ¼ �nlI ½2pnRK0ð2pnRÞ þ K1ð2pnRÞ	 ð1bÞ

and

Bz ¼ 1
2 nlIðcos b2 � cos b1Þ ð1cÞ

in terms of modified Bessel functions; l, the permeabi-
lity of the medium is essentially that of vacuum. The
angles b1 and b2 are defined by connecting a search
point on the axis at a distance b from the solenoid centre
at z ¼ 0, to the opposite ends of the winding at z ¼ �L=2
and z ¼ L=2. If the thickness of the winding is also
accounted for, the relationships

Bx ¼ 0 ð2aÞ
By ¼ �nlIwðuÞ ð2bÞ

and

Bz ¼ 1
2 nlIF ða; bÞ ð2cÞ

zþ cationic valency (-)

Greek symbols

a densification coefficient (-)
b1; b2 inclination angles between the axial search

point and solenoid ends (radian)
c Levich parameter in natural convection the-

ory, 0.48/Sc1=4 (Sc ¼ m=D; Schmidt number)
di dispersion parameter (cm)
dN thickness of the Nernst diffusion layer (cm)
dm mean thickness of the convective diffusion

layer (cm)
D length of the dispersion layer (cm)
g dimensionless convective diffusion layer co-

ordinate (cm); g0 layer thickness
h azimuthal angle (radian)
l permeability of the electrolyte (Vs A�1 cm�1)
m kinematic viscosity of the electrolyte

(cm2 s�1)
mþ cationic stoichiometric coefficient (dimen-

sionless)

q electrolyte density (g cm�3)
/ function defined by Equation 13(a)
U integral defined in Equation 17
w function defined by Equation 3(a)
x vorticity vector (s�1)

Subscripts

x; y; z; r; h component directions
o magnitude

Special symbols

\ superscript, denoting mean value at g0/2
Dn/Dt substantial derivative of vector n, @n=@tþ

ðn 
 rÞn
r gradient operator
r
 divergence operator
r3 curl operator
r2 laplacian operator
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replace Equation 1, with auxiliary quantities a ¼
ðR1 þ R2Þ=2; u ¼ 2pna; then

wðuÞ ¼ uK0ðuÞ þ K1ðuÞ ð3aÞ

and

F ða; bÞ ¼ ðL=2 þ bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðL=2 þ bÞ2

q þ ðL=2 � bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðL=2 � bÞ2

q
ð3bÞ

provided that the geometric aspect ratio L=R is suffi-
ciently large. In the limit, By ! 0, and Bz ! nlI , as
L=R ! 1. A more detailed analysis [13], not included
here, provides field distributions at separate locations,
that is, in the central zone and the off-centre zone along
and off the axis. It also extends analysis to non-circular
(e.g., rectangular) coils. The complicated computation
scheme involves elliptic integrals and Legendre polyno-
mials, but extensive tabulations [13] alleviate to some
extent the burden of computation of the B field at
arbitrary coordinate positions. It follows from Equation
3(a) that, if u is sufficiently large, the transverse compo-
nents are negligible and the generated magnetic field is
essentially axial, albeit non-uniform, along the axis.

2.2. MHD phenomena in an electrolyte contained inside a
solenoid

In an incompressible fluid medium the fundamental
Navier–Stokes equation may be expressed [14] as

q
ov

ot
þr m2

2

� �
� m3ðr3mÞ ¼ �rP þ qmr2vþ FT

ð4Þ

where

r2v ¼ rðr 
 vÞ � r3ðr3vÞ

and FT is the total of all external force vectors. In
combined electric/magnetic fields, an important compo-
nent of the total force is qEþ j3B. The first term
represents conduction and the second term is known as
the MHD body force density. Its expanded form

j3B ¼ ðr3BÞ3B

l
¼ ðB 
 rÞB

l
�rB2

2l
ð5Þ

represents magnetic stiffness, and the magnetic pressure
gradient, respectively [15]. The current density vector j,
not to be confused with js carried by the solenoid
winding, is an implicit function of B in an electrolyte, if
the electric field is strong enough to impose mass
transport control at the electrodes. In weak electric fields
it may be considered as an independent variable. The
ratio of the magnitude of terms in Equation 5 to the
magnitude of terms in Equation 4 expresses the relative
importance of the magnetic force per unit volume of the
fluid [16]. If the two quantities are equal, equipartition is

achieved, where the velocity magnitude is related ap-
proximately to the magnetic flux density as

vA  Bp
ql

ð6Þ

known as the Alfvén wave velocity, provided that the
right hand side of Equation 4 contains only the pressure
gradient and the MHD body force density. In electro-
lytes a study of MHD-generated waves requires a more
involved analysis [17]. (The indiscriminate use of the
equipartition principle would predict vA  28 m s�1 in a
B ¼ 1 tesla field in a common aqueous electrolyte!)

The right-hand side of Equation 5 is interpretable as
the Maxwell stress gradient, and the second term, the
magnetic pressure, represents an isotropic compressive
stress [18]. If the magnetic induction lines are not
curved, Equation 4 yields P þ B2=2l ¼ constant at
equilibrium. The principal Maxwell stresses arising from
B are composed of B2=2l tension along the field lines,
and B2=2l compression in all transverse directions.
Since ‘. . . j3B forces are in general rotational and create
vorticity. . .’ ([15], problem 4.15, p. 10), the magnetic
field effect on hydrodynamic behaviour may also be
traced conveniently (and often more efficiently) in terms
of the vorticity relationship

Dðx=qÞ
Dt

� x

q

� �

 rm ¼ 1

q
r3 j 3

B

q

� �
þ mr2x ð7Þ

where the vorticity vector x � r3v represents the
angular velocity of an infinitesimal fluid element. The
usefulness of a vorticity-based approach in interpreting
the magnetic field effect on various electrolytic cell
geometries is explored in the sequel.

2.3. An overall view of MHD effects on electrolysis

The interference of an externally imposed magnetic field
with the velocity field in the boundary layer is manifest
by the magnetic force component of FT in Equation 4. It
then follows directly from convective diffusion theory
[20, 21] that the ionic concentration distribution

ocI

ot
þ v 
 rcI ¼ r 
 ðDIrCIÞ ð8Þ

can undergo a significant modification due to the
magnetically modified velocity field. Equation 8 applies
in a strict sense only to a dilute binary electrolyte in the
presence of a supporting electrolyte of sufficient con-
centration, but the treatment required for concentrated
solutions is well beyond the scope of this paper,
inasmuch as the usual complications encountered via
the theory of irreversible thermodynamics [22, 23]
become even more severe. If migration due to charge
transfer cannot be neglected, the more general form of
Equation 8, expressed as [24]

oc
ot

þ v 
 rc ¼ r 
 ðDrcÞ � ðj 
 rtþÞ
zþmþF

ð9Þ
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indicates the necessity of knowing the diffusivity gradi-
ent due to the concentration field (and possibly to the
magnetic field, but to a much smaller extent), as well as
the transference number gradient. In consequence, a
straightforward solution of Equation 8 or 9 is not
feasible (this fact remains a fundamental challenge for
the theory of magnetoelectrolysis).

An alternative approach to the analysis of global
magnetic field effects (i.e., at current flows where
secondary interactions due to paramagnetism etc. can
be neglected) entails the study of vorticity formation.
The effectiveness of this approach, justified inside a
solenoid due to the existence of field inhomogeneity, was
demonstrated earlier in the absence of a solenoid [25],
and has recently been discussed at some length [11] for
certain configurations.

2.4. Vorticity analysis in magnetoelectrolysis carried out
inside a solenoid

2.4.1. Cylindrical cells in helical solenoids
In this configuration a cylindrical cell with an appro-
priate electrolyte occupying the space between two
concentric cylindrical electrodes is surrounded by helical
coils which generate the magnetic field. Neglecting
secondary effects, the MHD characteristics assembled
in Table 1 provide a reasonably accurate description of
the forcing elements in action. Under such circumstanc-
es, the approximating vorticity field equations can be
written as

oxr

ot
� oðvhxrÞ

oz
¼ 1

qr
oQ
oz

ð10aÞ

oxh

ot
¼ 0 ð10bÞ

oxz

ot
� oðvhxrÞ

or
¼ � 1

qr
oQ
or

ð10cÞ

if viscous effects are assumed to be small with respect to
the magnetic field contribution to vorticity. Further
manipulations are shown in Section 3, in applying the
theory to specific experimental cells.

2.4.2. Rectangular cells in helical solenoids
The preceding analysis can readily be adapted to
rectangular cells, employing cartesian coordinates in
the case of plate electrodes. If L=R � 1, the B distribu-
tion is given essentially by Equations 2(c) and 3(b), but
the current distribution is no longer purely radial, and
the velocity field is at least two-dimensional. Such cell/
solenoid configurations are less practical than the
configuration discussed in Section 2.4.3.

2.4.3. Rectangular cells in rectangular solenoids
As illustrated in Section 3, such experimental configu-
rations have been presented in the literature. The major
challenge here is the determination of the magnetic flux
density distribution inside the cell, based on certain
models approximating rectangular coils. The ‘superpo-
sition of building block’ principle [26] requires involved
computations, but if the coil is sufficiently long, end
effects can be neglected, and the rectangular coil may be
represented by the superposition of four finite rectan-
gular bars [26]. The finite-length coil case requires more
complex calculations, but graphs and tabulations (e.g.,
[27]) reduce somewhat the computational burden.

In rectangular-shaped solenoids an arbitrary B field
distribution can also be created by nonuniform coil-
winding techniques [10], but the field distribution has to
be measured experimentally. Such configurations are
excellent for creating extremely inhomogeneous mag-
netic fields which, in turn, produce strongly nonlinear
vorticity effects, albeit at the expense of manageable
mathematical description.

3. Application to experimental magnetoelectrolytic cells

operating in solenoids

3.1. Dissolution/deposition of copper in a cylindrical cell
inside a helical solenoid

The cell employed by Sundermann [28, 29] contained an
outer copper cylinder with a 5.0 cm active diameter, and
a 0.9 cm diameter solid inner copper rod; both electrodes
had an active length of 4.7 cm. The cell contained
aqueous CuSO4 solutions, and was positioned in the
central region of a 40 cm long, 8.8 cm diameter cylin-
drical solenoid. The magnetic field was generated by a
four layers deep 18 AWG magnet wire winding with 1424
total turns. The magnitude of the modified Bessel
functions in Equation 3(a) being about 10�450

(a ¼ 4:61 cm; n ¼ 35:6 cm�1), the field is fully axial with
a variation of F ða; bÞ from about 1 ðb ¼ L=2Þ to about
1.95 (b ¼ 0) inside the cell. Due to the high conductivity
of copper, the axial variation of the radial current may
be neglected. Then, under galvanostatic control, jr ¼
I=2pLcr is a simple hyperbolic function of radial posi-
tion. In consequence, the vorticity field is given by

oxr

ot
� vh

oxr

oz
 k1

r

� �
oBz

oz
ð11aÞ

Table 1. MHD characteristics of cylindrical electrolytic cells in helical

solenoids

Characteristic Equation

Current j ¼ erjr
Magnetic flux density B ¼ erBr þ ezBz

Velocity m ¼ ehvh

Vorticity x ¼ erxr þ ezxz

MHD body force density �ehjrBz

Vortex analysis components r3ðj3BÞ ¼ 1

r
er
oQ
oz

� ez
oQ
or

� �
v3x ¼ erðvhxzÞ � ezðvhxrÞ

r3ðv� xÞ ¼ �er
oðvhxrÞ
roh

þ eh
oðvhxzÞ

oz
þ oðvhxrÞ

or

� �
� ez

oðvhxzÞ
roh
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and

oxz

ot
� vh

oxr

or
� xr

ovh

or
 k1

r

� �
oBz

or
 0 ð11bÞ

if natural convection is neglected on account of the
(anticipated) intensity of induced azimuthal motion.
Under steady-state conditions, the azimuthal velocity
field may be approximated by the simplified Navier–
Stokes equation

r2 o
2vh

or2
þ r

ovh

or
� vh ¼ �k2Bzr ð12Þ

whose solution may be written in the dimensionless form

pl
IBz

� �
vh ¼ /ðrÞ ð13aÞ

where / is a dimensionless velocity function of the radial
position, defined as

/ðrÞ � r
2Lc

ln
R
r

� �
� r2

0 ln
R=r0

2LcðR2 � r2
0Þ

� �
R2 � r2

r

� �
ð13bÞ

As shown in Figure 1, the velocity reaches a local
maximum at the radial position of about 1.25 cm, at
which the gradient wðrÞ � 2Lcd/=dr, illustrated in
Figure 2, becomes locally zero. The graphs indicate
that vorticity effects are largest at the electrode–electro-
lyte interfaces: at the inner electrode, dvh=dr is about
3.16 s�1 and at the outer electrode, �1.27 s�1, for 1 A
current and 1 mT magnetic flux density.

3.2. Dissolution/deposition of copper in a multiple
electrode rectangular cell inside a rectangular solenoid

An experimental cell [30] described earlier (Figure 1 in
[31]) contained five 15 cm wide, 25 cm long and 0.4 cm
thick copper plates connected in an alternating C—A—
C—A—C (C cathode; A anode) pattern. The cell was
sealed in the interior space of a 26 cm � 26 cm � 10 cm
PVC container which was fully enclosed in a jacket with
a 960 turn AWG 14 copper wire coil, consisting of 12
layers, wound on its outside wall. The electrolyte

solutions were aqueous CuSO4 dissolved in sulphuric
acid of high concentration (1.50–1.62 mol dm�3). The
active electrode area was kept at 700–800 cm2 per
electrode face. The essentially axial mean magnetic flux
density varied between 4.0 (residual strength) and
785 mT. The transverse field components were of a
10�4–10�6 order of magnitude, relative to Bz in the near
corner areas, and completely negligible elsewhere in the
cell. In this configuration, natural convection at the cath-
ode plates cannot be a priori neglected, and the vorticity
analysis below considers a symbiotic effect of magnetic
field and convective buoyancy forces.

The rectangular coordinates are x normal to the
electrode plates, y parallel to the electrode plates and z
axial. The origin of the coordinate system is placed at
one of the lower edges of a cathode plate. To keep
mathematical encumbrance at a modest level, it is
postulated that classical convective diffusion theory
applied to natural convection at vertical plates can be
applied without structural modifications. The following
simplifications are introduced at this stage: (i) the
induced electric currents are negligible because of the
low magnetic Reynolds number, hence O½jx	 � O½jy ; jz	;
(ii) inside the boundary layer O½oq=oz	 and O½oq=ox	 are
much larger than O½oq=oy	, following the conventional
postulation of y symmetry in natural convection theory.
Hence, the right-hand side of Equation 7 may be
simplified to the form of

1

q
r�ðj3BÞ  �ex

ojxBz

qoz
þ jxBz

q2

� �
oq
oz

� �

þ ez
ojxBz

qox
þ jxBz

q2

� �
oq
ox

� �
ð14Þ

It then follows that only xx and xz are influenced by the
magnetic field, and they can be analysed separately.

(a) Analysis of xx. Since the magnitude of the gravity
force density in an aqueous electrolyte with density
about 1 kg dm�3 is approximately 9.81 N dm�3, a
current density of 981 A dm�2 would be necessary to
generate an MHD body force density of 9.81 N dm�3 at
a magnetic flux density of 100 mT. Experimentally
observed current densities [30, 31] ranging from 0.23 to
0.38 A dm�2 are about three orders of magnitude

Fig. 1. Velocity function /ðrÞ as a function of radial position in the

cell of Section 3.1.

Fig. 2. Velocity function UðrÞ as a function of radial position in the

cell of Section 3.1.
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smaller, suggesting that under such conditions magnetic
fields are not likely to interfere appreciably with the
structure of the boundary layer. In consequence, it may
be assumed that oq=oz is the predominant density
gradient (except right on the interface). Similarly, inside
the solenoid, oB=oz is predominant, and vx as well as xx

possess y symmetry. As shown in a previous study [25],
the xx derivatives are much larger than the vx deriva-
tives, and oðxx=qÞ=oz � oðxx=qÞ=ox. Thus, at steady
state conditions,

vz
oðxx=qÞ

oz
¼ � jx

q2

� �
oBz

oz
� Bz

q2

� �
ojx
oz

� jxBz

q3

� �
oq
oz

ð15Þ

Since the imposed current is essentially independent of
the z coordinate, the second term on the right hand side
of Equation 15 is negligible with respect to the first term,
yielding

vz
q

dxx

dz
� vzxx

q2

dq
dz

¼ � jx
q2

dBz

dz
� jxBz

q3

dq
dz

ð16Þ

which may be integrated by virtue of the integrating
factor exp½qð1 � ln qÞ	, following closely an earlier
development (Appendix of [25]). The integrated form
may be written as

x�
x ¼

jx
q�K

� �
UðhÞ � UðzÞ½ 	 þ jxBzað1 � c�Þ

2q0Kð1 � ac�Þ
� ðh�1=2 � z�1=2Þ ð17Þ

where UðzÞ �
R
ðoBz=ozÞz�1=2 dz. The first term in Equa-

tion 17 accounts for the nonuniformity of the magnetic
field, whereas the second term pertains to natural
convection in a uniform magnetic field. The * super-
script signifies that the appropriate quantities are
estimated at one-half of the dimensionless convective
diffusion layer thickness, that is, at g� ¼ g0=2, according
to natural convection theory (Equation 23.23 of [32]).
Note that the second term in Equation 17 corresponds
to the right hand side of Equation A.6 in [25], except for
the erroneous squaring of the ð1 � ac�Þ term in the
latter.

(b) Analysis of xz. Figure 3(a) illustrates the electric
current path in the cell. At each electrode there is a
sudden change in the direction of the electric current
which, in itself, is a function of the distance measured
from the lower edge of the electrode (in pure natural
convection, e.g., jx is proportional to z�1=4).

A charge balance on the shell volume in Figure 3(b),
that is,

bLeðdzÞ
oq
ot

¼ bLejz � bLe jz þ
ojz
oz

� �
dz

� �
þ LeðdzÞjx

ð18Þ

yields the steady state current distribution ojz=oz ¼ jx=b
in the electrodes. The variation of jx can be approxi-
mated by the periodic waveform shown in Figure 3(c),

where D represents the length of a ‘dispersion’ region in
the immediate neighbourhood of the electrodes. Within
this region the change in current direction is the result of
a gradual continuous process which is more realistic
than a sharp (mathematically inspired) discontinuity.
Since D � b, the function shown in Figure 3(c) may be
represented by the Fourier series [33]

jx ¼
4bj0

p2ðb=2 þ DÞ
X1

n¼0
f

f ðn; xÞ � sin
ð2nþ 1Þpðb=2 þ DÞ

b

� �

� sin ð2nþ 1Þ px
b

h i
� 1

2nþ 1
ð19Þ

Thus, for 0 < x < b=2 þ D, jx possesses a nonzero x
derivative, and if jxoBz=ox is rather small with respect to
Bzojx=ox, arguments presented above lead to the steady
state equation

vx
oðxz=qÞ

ox
 Bz

q2

ojx
ox

;
b
2
OxO

b
2
þ D ð20aÞ

with a convergent [34–36] current density gradient

ojx
ox

¼ 4j0

pðb=2 þ DÞ
X1

n¼0
f ðx; nÞ ð20bÞ

Since

ojx
ox

<
4j0

pðb=2 þ DÞ
X1

n¼0
cos ð2nþ 1Þ px

b

� �h i
� 1

2nþ 1

ð20cÞ

Fig. 3. Change in the direction of the current flow through the

electrolyte solution at the electrodes in the cell of Section 3.2. (a)

Schematic view of a cathode; (b) illustration for charge flow balance in

a cathode; (c) approximation to the current flow to the cathode:

pattern of the periodic functional form.
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follows immediately, and since the limit of the infinite
series in Equation 20(c) is given by the closed form
ln jcotanðpx=2bÞj, further simplifications yield the in-
equality

ojx
ox

<
2j0

pðb=2 þ DÞ ln
2b
px

� �
; x � b ð21Þ

The final step before integrating Equation 20(a) is the
estimation of vx. Since D is very small, an approximate
value, averaged over the electrode height may be
obtained from the truncated form of the expansion
given by Levich [32]:

vx  � 2cm
h3=4

� �
ga
4m2

� �3=4

x2 ð22Þ

Substituting Equations 21 and 22 into Equation 20(a),
and integrating from x to b=2 þ D, the expression

xzO
j0Bzh3=4

pðb=2 þ DÞ2cvðga=4m2Þ3=4

" #
ln

2b
pðb=2 þ DÞ

� ��

� ðb=2 þ DÞ
x

ln
2b
px

� �
� 1 � ðb=2 þ DÞ

x

� ��
ð23Þ

is finally obtained, within a distance di measured from
the electrode surface. In summary, the vorticity distri-
bution

x ¼ ex
ovz
oy

� ovy
oz

� �
þ ez

ovy
ox

� ovx
oy

� �
ð24Þ

indicates the existence of a three-dimensional velocity
field, with component directions being opposite on the
two sides of the electrodes. The resulting motion is a
closed-loop vortex around the electrodes, observed also
experimentally [31]. A typical variation of the magnetic
flux density (Figure 4) and one vorticity component
(Figure 5) along the axis indicate the coincidence of
local extrema in these quantities. The estimation of the z
directional vorticity component is more involved due to

the a priori indeterminacy of the dispersion length, but it
is to be noted that it takes up a very small fraction of the
convective diffusion layer thickness, inasmuch as the
change in direction of the current flow near an electrode
surface must begin at a very small distance from it.
Under the experimental conditions of Figure 4, Equa-
tion 23 may be written as

xz ¼ �0:007 493
jxBz

d2
i

 !
ln

0:016 17

di

�

� di
x

� �
ln

0:016 17

x
� 1 � di

x

� ��
s�1 ð25Þ

On the basis of convective diffusion theory applied to
natural convection at vertical plate electrodes [32, 37],
D ¼ 10�4 cm is assumed, then di  0:02 cm is a reason-
able estimate of the dispersion parameter di. Thus,
at x ¼ ðbþ DÞ=2  0:02 cm, the vorticity component
xz < 2 � 108j0Bz s�1. Hence, at the highest magnetic flux
density of 785 mT, the magnitude of xz is less than
about 1:6 � 104 j0 s�1, its direction being positive (coun-
terclockwise) on one side of the electrode, and negative
(clockwise) on its other side. Thus, a strong vortex is
forming a ‘tight’ closed loop around an electrode within
distance di. The actual magnitude of xz is most likely
much smaller than its hereby estimated upper bound,
but even if it were three or four orders of magnitude
smaller, it would be still much larger than the magnitude
of xx within 0 < x < di. In the large remainder of the
convective diffusion layer (i.e., D < x < dN ), the vorticity
effect is due essentially to the nonuniformity of the
magnetic field. Closed-loop vortex motion was, indeed
observed [31] by means of light particles travelling on
the electrolyte surface around the electrodes, whose
speed and curvature indicates a strong dispersion of the
generated vorticity effect into the electrolyte bulk (i.e.,
several millimetre from the electrode).

4. Implications for the design of magnetoelectrolytic cells

operating inside solenoids

The prime result of a vorticity-based analysis is that cells
placed into a solenoid zone with significant magnetic

Fig. 4. A typical variation of the measured axial magnetic flux density

with axial position in a multiple electrode cell [32, 33] containing

0.08 mol dm�3 cupric sulfate and 1.60 mol dm�3 sulfuric acid. h ¼
15:24 cm; d ¼ 25:4 cm.

Fig. 5. Variation of the x-directed vortex component (Equation 17)

associated with conditions indicated for Figure 4.
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field asymmetry can be expected to undergo the highest
possible turbulence/vortex generation. This is a major
avenue of magnetically enhanced mass transport rates.
Such ‘optimal’ regions can, in effect, be found even in
large geometric aspect-ratio solenoids, as demonstrated
below, in the case of medium diameter helical solenoids
with a small number of turns. As indicated by Equation
3(a), if u is small, the magnitude of the wðuÞ=F ða; bÞ
ratio may remain larger than zero; even at the relatively
large value of u ¼ 6, wðuÞ ¼ 0:008 81 and at u ¼ 9,
wðuÞ ¼ 0:000 511. Table 2 illustrates the existence of
relatively large local ðBy=BzÞ gradients in a ‘border’ zone
taking up approximately 1% of the total solenoidal
length. The transverse field strength becomes, in fact,
larger in magnitude than the axial field strength within
this zone. It is worth noting, however, that if the number
of coil turns were large, the degree of field inhomoge-
neity would be smaller, if existing at all, and the solenoid
field would be essentially axial with a small (albeit
nonzero) oBz=oz gradient (e.g., if n ¼ 5 cm�1, and
a ¼ 2 cm, wðuÞ  5 � 10�27 and By  0, in accordance
with Equation 3(a)). Magnetoelectrolysis carried out
inside rectangular solenoids on a pilot–plant scale [10,
38] suggest practical applications in the electroplating,
electrowinning and electrorefining of aqueous metal-ion
solutions. As shown in these references, electric current
to such cells could be applied via bus bar or pipe
sections joined by means of elbow pieces in such a
manner that the bars form a rectangular coil consisting
of a few turns around the electrolytic cell. The solenoid
can be excited by the d.c. current required for electro-
lysis, and relatively large currents can be passed if
cooling water is flown through the pipe sections to
minimize temperature rise in them. These are important
engineering aspects, since the additional modest ohmic
voltage drop costs encountered in operating the solenoid

would be offset by increased profits from higher
production rates. In the case of new installations,
smaller tank construction costs would be realisable,
inasmuch as cell volumes at a fixed current level could be
smaller than in the absence of a magnetic field. It is also
well known (e.g., [1–3]) that higher current densities in
magnetoelectrolysis do not cause electrode surface
deterioration under proper operating conditions, hence
current densities well above current industrial limits can
be envisaged.

5. Implications for electrochemical mass transport

The major implication for electrochemical mass trans-
port stems from the beneficial effect of magnetic field
imposition on turbulence generated at the electrode–
electrolyte interface; the convective component of con-
vective diffusion may thus become the dominant driving
force for ion transport. As a result, the mean thickness
dm of the convective–diffusion boundary layer is reduced
and, in consequence, the ionic mass transport coefficient
km is increased. Since the effect of magnetic fields on
diffusivity is extremely small [1], enhancement in specific
mass transport rates is directly linked to a decrease in
dm, under full mass transport control. Under such
conditions, the mass transport coefficient in a magnetic
field may be estimated from the relationship

RM � ðkmÞB
ðkmÞB¼0

¼ iB
iB¼0

ð26Þ

at a sufficiently cathodic fixed potential to ensure mass
transport control.

If turbulence is sufficiently strong, certain local
sections of the boundary layer may be extremely thin,
while other sections may be relatively thick. Heavy
deposits may then alternate with essentially deposition-
free domains on the cathode surface [10, 38]. Under such
conditions, quantitative estimation of the turbulence
effect cannot be made reliably.

At current levels below the limiting plateau, where
mass transport and charge transport share control of
the ion transport process, system complexity [39]
thwarts the application of simple relationships. In a
first approximation, the effect of charge transfer on
current density in magnetoelectrolysis may be accounted
for, at least in principle, by the modified Equation 7
in [40]:

jiBj ¼ zFD
ðc1 � ceÞ
dmð1 � tþÞ

ð27Þ

if the Nernst layer thickness is replaced by the mean
boundary layer thickness. However, the simultaneous
effect of magnetic fields on boundary layer thickness and
cationic transport number has to be known. To the
author’s knowledge, no such quantitative relationships
exist at present in the literature.

Table 2. Magnetic field characteristics in a (hypothetical) medium

diameter solenoid with a small number of coil turns

L = 1 m; n = 10 m)1; a = 2 cm; w(u) = 0.7684.

b F(a, b) |By/Bz| B2/2l
/cm /(dimensionless) /(dimensionless) /lN m)2

0 1.9984 0.769 99.82

5.0 1.9983 0.769 99.82

10.0 1.9982 0.769 99.81

20.0 1.9974 0.769 99.76

30.0 1.9947 0.770 99.59

40.0 1.9803 0.776 98.69

45.0 1.9283 0.797 95.50

46.0 1.8942 0.8113 93.45

47.0 1.8318 0.8389 89.80

48.0 1.7169 0.9003 82.86

49.0 1.4470 1.0620 69.98

49.5 1.2423 1.2370 61.33

49.6 1.1959 1.2850 59.56

49.7 1.1481 1.3385 57.80

49.8 1.0993 1.3980 56.07

49.9 1.0497 1.4640 54.40

50.0 0.998 1.5370 53.00
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6. Final remarks

While vorticity generation due to interaction of inho-
mogeneous magnetic fields with an electric field is the
primary cause of ionic flow enhancement (in addition to
enhancement produced in homogeneous fields), the
opposite phenomenon: vorticity suppression, can also
be observed under certain conditions. A specific in-
stance, where the r3ðj3BÞ term opposes vorticity in a
flow cell exposed to a uniform transverse magnetic field
is shown [41] to possess a characteristic vorticity
relaxation time q=rB2. In magnetoelectrolysis, carried
out inside a solenoid, special advantage can be taken of
the well-known fact in MHD theory, that a ‘. . .mean
motion and/or turbulence of the electromagnetic quan-
tities must occur in addition to the fluid turbulence. . .’
[42], so that j3B is rotational and creates vorticity. A
case in point, turbulent flow propagation in the wake of
local vortex creation has been documented via a laser-
based visualization technique [43].
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